Exercise 7

Let z be a nonzero complex number and n a negative integer $(n=-1,-2, \ldots)$. Also, write $z=r e^{i \theta}$ and $m=-n=1,2, \ldots$. Using the expressions

$$
z^{m}=r^{m} e^{i m \theta} \quad \text { and } \quad z^{-1}=\left(\frac{1}{r}\right) e^{i(-\theta)}
$$

verify that $\left(z^{m}\right)^{-1}=\left(z^{-1}\right)^{m}$ and hence that the definition $z^{n}=\left(z^{-1}\right)^{m}$ in Sec. 7 could have been written alternatively as $z^{n}=\left(z^{m}\right)^{-1}$.

Solution

Use the provided expressions to verify the result. Start with the left-hand side.

$$
\begin{aligned}
\left(z^{m}\right)^{-1} & =\left(r^{m} e^{i m \theta}\right)^{-1} \\
& =\left(\frac{1}{r^{m}}\right) e^{i(-m \theta)}
\end{aligned}
$$

Now simplify the right-hand side.

$$
\begin{aligned}
\left(z^{-1}\right)^{m} & =\left[\left(\frac{1}{r}\right) e^{i(-\theta)}\right]^{m} \\
& =\left(\frac{1}{r}\right)^{m} e^{i(-\theta) m} \\
& =\left(\frac{1}{r^{m}}\right) e^{i(-m \theta)}
\end{aligned}
$$

Both sides yield the same result, so $\left(z^{m}\right)^{-1}=\left(z^{-1}\right)^{m}$ is verified.

